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Flow in shock tubes with area change at the diaphragm 
section* 

By R. A. ALPHER and D. R. WHITE 
General Electric Research Laboratory, Schenectady, New York 

(Received 27 August 1957) 

SUMMARY 
This paper describes theoretical and experimental studies 

of the effects on shock tube flows of a monotonic convergence 
at the diaphragm section. Systematic flow equations are developed 
for tubes of uniform bore and tubes having either a monotonic 
convergence or a convergence-divergence in the diaphragm 
section. Except across the shock front itself, isentropic processes 
and ideal-gas behaviour have been assumed. Simplified pro- 
cedures are presented for predicting the ideal-flow parameters 
over a wide range of operating conditions, as well as for comparing 
straight and convergent tubes. Such comparisons made by 
other investigators are found to be incomplete or in error. The 
experiments described utilize a very simple device for altering 
the diaphragm section convergence and a multi-station measure- 
ment of shock velocity. The expected effect of convergence is 
verified over a wide range of Mach numbers. Even at Mach 
numbers where the processes of shock formation can no longer 
be ignored, it is found that the relative performance between a 
uniform and convergent tube is preserved. 

INTRODUCTION 
The basic shock tube is one of uniform cross-section throughout, in 

which the rapid removal of a diaphragm separating two gases at different 
pressures leads to the generation of a shock wave in the region of lower 
pressure. The regions initially at high and low pressure are designated 
as driver and driven sections respectively. It has now been well established 
experimentally that if all other initial conditions are equal, one will realize 
a stronger shock wave in a tube having in the diaphragm region an area 
reduction from driver to driven section than in a tube of uniform bore. 
So-called convergent shock-tube flows have been considered by Bannister 
& Mucklow (1948), Lukasiewicz (1952), Resler, Lin & Kantrowitz (1952), 
Wallace & Mitchell (1953), Wallace & Nassif (1954), Hooker &White (1955), 
and Alpher & White (1957). This last reference contains the theoretical 
work of this paper together with more extensive derivations ar,d calculations. 

* A preliminary account of this work was given at the 1957 Annual Meeting of the 
American Physical Society in New York City. 
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In this paper we shall develop a general idealized theory of shock-tube 
flows, valid for uniform, convergent, or convergent-divergent tubes, 
whether operated in the subsonic or supersonic cold-flow regimes. 
Experiments will be described which show the difference between uniform 
and convergent tubes to be as predicted over a wide range of Mach numbers, 
even though with increasing shock strength an increasing deviation from 
absolute predictions of the theory is noted. 
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Figure 1. Schematic diagram of shock tube with convergent geometry at the dia- 
phragm section. The dashed lines in the diaphragm section denote a 
convergent-divergent geometry with minimum area at 3h’. The pressure 
distribution is, of course, only symbolic. 

The model of the flow situation which has been employed is given in 
figure 1. After diaphragm removal, energy is extracted from the driver 
gas through an unsteady expansion from state 4 to state 3a. The transition 
section presents three possibilities. If it is uniform, i.e. if it connects 
equal areas, states 3a and 3b coalesce and denote the state at the diaphragm 
location, If the cold flow is supersonic, this state is the point in an unsteady 
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expansion at which the Mach number becomes unity. If the transition is 
montotonically convergent, the flow from 3a to 3b is steady nozzle flow, 
and the convergent flow at 36 may be either subsonic or sonic. Following 3b 
one has either uniform flow in state 3 with M3 < 1 or an unsteady supersonic 
expansion to state 3 with M3 > 1. Finally, if the transition section is 
convergent-divergent, i.e. if 3b' represents a minimum area, one has either 
a subsonic or supersonic nozzle between states 3a and 3b. I n  the supersonic 
case the exit flow at state 36 may be subjected to a further unsteady 
expansion to state 3 .  Boundary-layer effects, attenuation and the process 
of shock formation have not been considered. The driver gas is treated 
isentropically, and departures from ideality are not explicitly considered 
for the shocked gas. As will be seen, it is a simple matter to modify this 
presentation to include the real changes in the driven gas states. 

Basic calculations involve determining, for initially given gases and 
thermodynamic states in the driver and driven sections (i.e. the pressures p, 
and p,, sound velocities a, and u4, and specific heat ratios 7, and y4) the 
resultant shock strength and the thermodynamic state of both the expanded 
and shocked gases. 

THEORY 
Uniform shock tube 

The situation in a uniform tube is sufficiently well known that it need 
have only brief mention. One wants to relate the initial pressure ratio 
across the diaphragm, p4/pl = z, to the pressure ratio across the shock 
(i.e. the shock strength p2/pl  = y )  or alternatively to the shock Mach 
number M,. In the uniform tube there is a continuous unsteady expansion 
from state 4 to state 3. If M3 3 1 one has sonic flow at the diaphragm 
location. The particle velocity imparted by an unsteady expansion from p 4  
to p,, where we note that p = kpy and that u4 = 0, can be written (see 
Liepman & Puckett (1947), p. 461) 

u, = J;:!2)1/2* P = Y 4 - 1  2% [ 1 - (P3>'"';"&] (1) 

This velocity can be subsonic, sonic or supersonic in value. The flow or 
particle velocity behind the normal shock is determined from the shock 
Hugoniot; or, if treating the shocked gas as ideal gives an adequate 
approximation, then the Rankine-Hugoniot relations give 

We can combine (1)  and (2) since at the interface between shocked and 
expanded gas we must have u3 = u2 and p3  = p, .  Solving for z yields, for 
the uniform tube, 
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Tube with diaphragm section area change 
Relationships between x and y or Ms for the tube with an area change 

in the diaphragm section are obtained as for the uniform tube. Referring 
again to figure 1, one proceeds as before to connect the shock front with the 
driving gas by matching pressure and flow velocity at the contact surface, 
except that now steady or unsteady processes, as the case may be, must be 
considered at the diaphragm section. Consider the general case of a 
convergent-divergent diaphragm section. When the shock-tube flow is 
established, the pressure ratio x may be expanded as follows (see figure 1 )  : 

z =--4 =-----  . 
Here the suffix c refers to the non-uniform tube, whereas suffix s will be 
used to refer to the uniform tube. The various pressure ratios in (4) can be 
interpreted directly. Thus p4/p3a is that ratio required to accelerate the 
driver gas by an unsteady expansion from rest to Mach number M3a. The 
ratio p3a/p3br is that required to bring the driver gas by a steady expansion 
from M3a to One can introduce the area ratio A , / L I , ~  into p3,/p3b, by 
using the condition of conservation of mass. Expansion from 3b’ to 3b also 
will be a steady process, supersonic or subsonic according as the flow at 3b‘ 
has become sonic or not. (By our restriction to isentropic channel flow 
for the driver gas, we exclude that range of x which leads to an over- 
expansion for a convergent-divergent section.) In either event the ratio 
P 3 b ’ / P 3 b  is that required to bring the gas by a steady expansion from M3b. 
to M3b through an area ratio A3W/A3b. The ratio p 3 b / p 3  is then that needed 
for an unsteady expansion from M3b to  M3. At the contact surface, p 3  = p,,  
and p2 /p l  is defined as the shock strength y. Equation (4) can therefore 
be written as 

(4) 
P P 4  P 3 u p 3 b ’ P S b ~ 3 &  

Pl  P3a P3b’ P 3 b  P 3  P 2  PI 

Since this relation involves M3, M3a and M3b as well as x, and y, we require 
additional relationships. One of these involves the overall area ratio in 
the transition section, which can be written as follows, regardless of whether 
M I is subsonic or sonic or whether 3b‘ is a section of minimum area or an 
undistinguished section in a monotonic convergence : 

3b. 

The second relation we require connects Ms with M3, M3a and M3*. One 
expands M3 in the same way as x, in (4) ; thus 

Substituting for the sound velocity ratios, we obtain 



Flow in shock tubes with area change a t  the diaphragm section 461 

where the quantityg, which we call an ' equivalence ' factor (see next section), 
was first used by Resler, Lin & Kantrowitz (1952). It is defined as 

Usingg, one can rewrite ( 5 )  as 

Equations (6) to (10) enable the calculation of shock-tube flows with a 
convergent or convergent-divergent diaphragm section, in the case of 
subsonic, sonic or supersonic cold flow. The  results for a uniform tube are 
recovered by noting that with A,IA - 1 ,  one has M,, = with g = 1. 

1: 
For subsonic cold flow (the assumption of isentropy excludes a transition 

to subsonic flow through a shock), the transition section is a subsonic nozzle 
with M,, = M,, p , ,  = p ,  and a,, = a,. Equations (6), (8) and (9) reduce 
to three simultaneous equations in g, hi', and M,,, which can be solved by 
iteration with an ab initio choice of u4, a, and Ms. I n  this subsonic case, 
only the ratio A4/Al enters, and the existence of a minimum section is 
irrelevant. 

For supersonic cold flow, M3 >, 1, one must have M,,, = 1 (or M,, = 1 
if the section is monotonically convergent so that A,, = A ,  is the minimum 
area). The usual relationships between area ratio and Mach number in 
supersonic nozzles apply, as used in obtaining (5), to give M3, and M,,. 
From these M,, g, and z, follow. 

Computation of shock-tube parameters 

The procedure used in developing the shock-tube equations suggests 
a rather simple graphical means of solving the equations for a given tube. 
The reader will recall that the shocked gas and the driver gas are connected 
by matching pressure and velocity across the contact surface. The  graphical 
material can be divided into that pertaining to the driver and that to the 
driven gases, the one being independent of the other except as matched 
at the contact surface. The  advantages of this are made clear in the following. 

The shocked gas may be characterized by a plot of either shock strengthy 
or shock Mach number versus u2/a1, where u2 is the flow velocity imparted by 
the shock. Such curves may be computed from (2) for ideal gases, but 
require a knowledge of the shock Hugoniot if the shock strength is 
sufficient to merit this (see, for example, Doring 1949. Alpher 1957, or 
Lighthill 1957). 

The driver gas is brought into the calculation in the following way. 
,4 statement of A,/Al,  y 4  and a4 determines the equivalence factor g as 
a function of u,/a4 = u2/a4. Plots of g us (u2/al)(al/a4) are given in figure 2 
for y 4  = 5/3 and in figure 3 for y4 = 715 for both subsonic and supersonic 
cold flow. I t  may be noted that for M3 < 1 these plots apply either to a 
monotonically convergent or a convergent-divergent transition section, 
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while for M3 > 1 they hold only for the monotonically convergent section, 
since in this latter case M3b (see (9)) is taken as unity. Figure 4 is a plot 
of g vs y4 for various values of A,/A, in the case M3 2 1. Again the plot 
holds for monotonic convergence, since M3b is taken as unity. Such a plot 
is of use with combustion drivers, in which helium or hydrogen plus the 
products of hydrogen-oxygen combustion give an intermediate y4 value. 

Figure 
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: 2. The equivalence factor g us (uz/ul)(ul/u,) for a selection of area ratios, with 
y4 = 1.4. The connecting line at the right of the curves is the locus of g 
values for which the cold flow is sonic (M3 = 1). For larger values of 
(ua/al)(~,/~~4) corresponding to M3 > 1, g is constant and equal to the values on 
this sonic line. 

The usual calculation to be performed for a shock tube is the deter- 
mination of the diaphragm pressure ratio z required to produce a shock of 
given strength y. From y the 
flow velocity uz/al is computed. The appropriate equivalence factor is 
then read from figures 2, 3 or 4. Finally from figure 5 (which is a plot of 
equation (10)) one reads gz/y, whence x is determined. It may be noted 
that the quantity x/y is the ratio of pressures through which the driver gas 
expands. When one has at hand a tube with fixed A,/Al, then curves 

One is given yl, y4, a,, a,, A4/A,, and y. 
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of z/y vs uJa, may be prepared which incorporate the appropriate 
equivalence factor. Such curves are particularly useful when various gases 
are to be used or when high temperature shock Hugoniots are to be taken 
into account. 

Figure 
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To illustrate the results of such calculations, we have prepared figure 6, 
which gives the diaphragm pressure ratio required to produce given shock 
Mach numbers for helium driving into ideal argon (electronic excitation 
and ionization are negligible up to M =  10 in argon) for several area 
ratios. An ideal y vs M, curve is included for reference. 

Gain ' factors 
Although the use of a convergent transition section may have such 

advantages as smoothing out flow irregularities associated with combustion 
driving, as well as locating the diaphragm where it will not choke the flow 
if it does not open completely, the main reason for using such sections is 
that they provide an easy way of getting a stronger shock, other things 
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being equal. It is therefore pertinent to consider various measures of the 
‘gain’ to be realized with a convergent tube as compared with a uniform 
tube. One such measure is the ratio G, = x,/z,., where x, and x, are the 
respective values for a uniform and a convergent tube in which the same 
Mach numbt r is achieved, all other things being equal. The simplest way 
of obtaining G,, other than computing it from (3) and (lo), is to read off z 
for the given A4IA1, and for A4IA1 = 1 for a given M,, from a plot such as 
figure 6 ; the ratio in then computed between these z values. As may be 
readily shown from the analytical expression, the factor G, becomes 
infinite, as does x,, when M, is increased without limit. 

R. A.  Alpher and D. R. White 

ADIABATIC INDEX OF DRIVER GAS y6 

Figure 4. Limiting value of the equivalence factor g, corresponding to sonic or super- 
sonic cold flow, vs y4 for various convergence area ratios in a monotonically 
converging tube. 

A second measure of gain, G,, may be defined as the ratio of the shock 
Mach number achieved in a convergent section tube to that in a uniform 
tube for the same diaphragm pressure ratio, all other things being equal. 
Analytic expression of such a factor is not possible, but values of G, are 
readily obtained from plots such as figure 6 by reading the values of Ms 
for the given A,/A, and for A4/A, = 1 at a given x. It is not difficult to  
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show that for ideal gas behaviour G, approaches a limiting value g(yI-1)/2Ya 

as z increases without limit. These limiting values are implicit in table 1, 
which will be explained immediately below. Examination of equations (3), 
(8), and (10) indicates that the diaphragm pressure ratio and the cold flow 
Mach number both become infinite at a finite value of u2. Hence, under 
ideal conditions (as represented by equation (2)), there is a maximum 
shock strength attainable in a given tube. Table 1 gives maximum values 
of the shock Mach number (i.e. the values for p, /p ,+  a) for various 
values of A,/A,, both for the temperature ratio T4/Tl = 1 and for T4/Tl = 2. 

Figure 5. Curves for computing shock-tube performance. The point at which the 

Table 1 points out quite strikingly that the Mach number gain resulting 
from the use of a convergent transition section is not particularly large. 
The advantage of increasing sound velocity in the driver should be noted. 

Comparisons of performance in convergent and straight tubes have 
been made by Lukasiewicz (1952), Resler, Lin & Kantrowitz (1952), and 
Yoler (1954) (see Alpher & White 1957 for a more detailed discussion 

cold flow becomes sonic is indicated. 



466 R. A.  Alpher and D. R. White 

N2/N2 
NZIA 
H a 2  
He/A 
HIIN2 
H2l-4 

He/Nz 
He/A 
HZ” 
HalA 

L 

6.18 6-34 6.47 6.76 
7.48 7.69 7.84 8.20 

10.9 11 .3  11.6 12.5 
12.8 13 .3  13.7 14.7 
22.6 23.2 23.6 24.7 
27.5 28.3 28.8 30.1 

14.8 15.4 15.9 17.1 
18.0 18.8 19.3 20.8 
31.9 32.8 33.4 34.9 
38.9 40.0 40.7 42.6 

SHOCK MACH NUMBER M, 

Figure 6. Diaphragm pressure ratio vs shock Mach number, for helium driving into 
A plot of shock strength pz /p l  vs shock argon at the same temperature. 

Mach number is included for reference. 

T4/T, = 1 

TJT, = 2 

A4/A, = 1 1 .51  2.25 co Driver-driven 
gas combination 

Table 1 .  Maximum values of shock Mach number M, for z = pa /p ,  --f CO. 
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of their work). Lukasiewicz obtains limiting values of the equivalence 
factor g for A,/A, -+ co, but erroneously restricts them as holding only 
for equal cold flow Mach numbers M3 in straight and convergent tubes. 
His work also suggests as a measure of gain the ratio of values of z in straight 
and convergent tubes required to achieve a given value of M3. This does 
not appear to be a particularly useful measure since shocks of different 
strength will result. Resler, Lin & Kantrowitz discuss relative performance 
of the two situations from two viewpoints. First, one may regard the 
equivalence factor g as the ‘ gain in effective pressure ’ on driving a shock 
by using a steady flow (convergent) rather than an unsteady flow (uniform) 
transition section at the diaphragm. Second, they point out that a tube 
with a convergent section is ‘equivalent’ to a straight tube having an 
initial pressure ratio gz, and an initial sound speed ratio ( ~ , / a , ) g ( ~ ~ - ~ ) ’ ~ ~ ~  
(see equation (10)). Their discussion of these matters is quite brief and 
limited to the case of supersonic cold flow. Finally Yoler has used the 
equivalence factor g as though it were the gain factor G,, which invalidates 
some of the data reduction and conclusions in his work. 

EXPERIMENTAL WORK 

Described below are some experiments with a shock tube in which the 
area ratio A,/A, across the diaphragm section was alternatively 1.0 or 1.51. 
They show that the shock enhancement due to a convergent diaphragm 
section is satisfactorily predicted by the preceding analysis. Measured 
quantities were the initial pressures p ,  and p,, and the shock velocity as 
a function of distance from the diaphragm. The shock tube had a driven 
section 3$ in. square in cross-section and 40 ft. long. The driver was 
circular in cross-section, with a 4.5 in. inside diameter, and is 6.5 ft. long. 
Driver gases were helium and hydrogen, while driven gases were air, 
nitrogen, and argon. The most extensive data were obtained with 
helium/air, and only these will be reported here since the experiments with 
other gas combinations merely corroborated these results. In all tests the 
driver pressure was slowly raised until the diaphragm ruptured. The 
diaphragms were clamped at the driver end of the transition section, and 
were generally of 0.010 to 0.030 in. thickness stainless steel scored in a cross, 
one-third to a half of the thickness being removed by the scoring tool. 
Driver pressures were in the range of 100 to 800 1b . /h2  and were measured 
with a calibrated Bourdon gauge. Driven section pressures were measured 
with a manometer for p ,  > 50 mm of mercury, a Wallace and Tiernan 
absolute pressure indicator for 50 mm > p ,  > 2 mm, or a McLeod gauge 
for p ,  < 2 mm. 

Since the processes of shock formation and attenuation cause the shock 
velocity to change with distance from the diaphragm, instrumentation was 
devised to enable measurement of the shock velocity as a function of position 
in the tube, and hence to determine the maximum shock strength wherever 
it occurred relative to the diaphragm. The arrival of the shock at an 
instrument station along the tube was detected by a thin-film heat detector 
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of the sputtered platinum type (Rabinowicz, Jessey & Bartsch 1956). 
T o  permit a number of such signals from different stations to be coupled 
to a recording system, it was desirable to lock out signals subsequent to the 
first from each station, and also to make the duration of this first signal very 
short. The heat detector output was amplified and fed to a 6D4 thyratron 
(the more commonly used 2D21 thyratron was found to be unsuitable 
due to its having firing delays of from 8 to 20 microseconds for weaker 
signals). The outputs from SIX of these thyratrons were fed through 
individual decoupling diodes to a blocking-oscillator type of pulse generator. 
Hence, through two such circuits, brief pulses were generated corre- 
sponding to shock arrivals at up to twelve stations spaced along the tube 
at 32-6in. intervals. A vertical raster pattern was formed on the screen 
of a cathode-ray oscilloscope by connecting to the y-input a crystal- 
controlled sawtooth voltage generator of 100 microseconds period, the 
x-deflection being actuated by the oscilloscope’s time base with a much 
longer period of about 10 milliseconds. In this manner about 500 cm of 
sweep at a writing speed of 20 microseconds/cm were obtained for a single 
sweep of the oscilloscope’s time base. Time markers at 10 microsecond 
intervals were applied through intensity modulation of the oscilloscope. 
The amplified and shaped (i.e. shortened and freed from extraneous signals 
following the initial one) pulses originating from the heat gauges were 
applied directly to  the x-plates of the oscilloscope, and so caused horizontal 
breaks in the vertical raster. The oscilloscope was triggered by the output 
from a barium-titanate transducer, which was fixed in the wall of the shock 
tube near the diaphragm and was sensitive to mechanical vibrations of the 
tube as the diaphragm broke. The shock velocity at different positions in 
the tube could readily be deduced from a photographic record of the raster, 
on which time intervals could be measured with a possible error of about 
a microsecond. 

For 
these experiments an area ratio of unity was obtained by inserting down 
the centre of the driver a wooden dowel which terminated short of the 
diaphragm. This resulted in quite dissimilar cross-sections in the driver 
and driven parts of the tube, but permitted use of the same diaphragms as 
before the modification, so that the mechanics of the rupturing diaphragm 
was not a variable in the comparison. 

In  general a rapid acceleration of the shock to a maximum velocity was 
noted relatively near the diaphragm, followed by a gradual deceleration as 
the shock proceeded down the tube. Since the treatment in the present 
paper takes no account of shock formation and attenuation processes, the 
maximum shock velocity observed was judged to be that most suitable for 
comparison with the theoretical results. Since this observed value is actually 
the average over a significant interval, it is in general slightly smaller than 
the actual peak velocity. 

The data are shown in figure 7. Note that the experimental shocks in 
each case are somewhat weaker than the theoretical predictions, but that the 

The shock tube as constructed had an area ratio A,/A, = 1.51. 
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shock enhancement due to a convergent transition section is in excellent 
agreement with theory. 

Our experiments have been continued to the study of stronger shocks 
than those described here ; and with the present shock tube the indications 
are that, for diaphragm pressure ratios above about 1000 with hydrogen 

Figure 7. Comparison of ideal shock-tube theory with experiment for a 3$ in. square 
shock tube to demonstrate the effect of a convergence at the diaphragm section. 

or helium as the driver gas, the performance of the tube can no longer be 
depicted by an ideal theory. Shocks stronger than predicted by ideal theory 
are observed, and the maximum shock velocity in an experiment can occur 
quite far from the diaphragm. T o  explain such observations, one must 
consider the finite time for diaphragm rupture, mixing effects in the contact 
zone, shocked gas non-ideality, and wall attenuation effects. Nevertheless, 
even with these stronger shocks, the enhancement due to convergence 
appears to be predicted fairly accurately by ideal theory. 
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